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Clipped random wave analysis of isometric lamellar microemulsions
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We have made small angle neutron scattering studies of C10E4-D2O-octane isometric microemulsions in the
lamellar phase at the hydrophile-lipophile balance temperature. The scattering intensity distributions were then
analyzed with a particular choice of a spectral density function~SDF! derived by maximization of generalized
entropy. The model agrees well with the measured intensities on an absolute scale, and allowed us to derive
various length scales associated with the microemulsion mesoscopic structure as well as the average interfacial
curvatures. We also used the experimentally determined SDF to generate a three-dimensional snapshot of the
fluctuating microemulsion microstructure. Unlike conventional pictures of extended lamellar planes, we ob-
served small domains which were internally lamellar but randomly oriented with respect to each other. Finally,
we computed the probability distributions of the mean curvatureH and the Gaussian curvatureK on the
oil-water interface. The former showed a symmetric distribution centered aroundH 5 0, while the latter
showed a skewed distribution peaked at a negative value ofK, but with a wing extending to positive values.
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I. INTRODUCTION

Microemulsions are amphiphilic solutions containing o
water and surfactant which appear macroscopically misc
but in reality are phase separated on a microscopic sc
with the oil and water domains held in contact by the surf
tant molecules. Depending on external parameters suc
temperature and the relative volume ratios of oil, water, a
surfactant, they exhibit a rich variety of internal structur
including globular micelles, disordered bicontinuous me
branes, and stacked lamellar planes.

In recent years, techniques such as light, x-ray, or neu
scattering have yielded a wealth of information about th
different structures. In particular, theLa lamellar phase has
attracted a lot of interest because it is fairly common in a
phiphilic systems and is easily characterized by its rotat
of polarized light. Since theLa phase consists of alternatin
sheetlike domains of water and oil stacked at regular in
vals, a Bragg peak is typically observed in the scatter
pattern, corresponding to the repeating distance of the lam
lar planes@1,2#.

At moderate concentrations of surfactant where the
peating distance is greater than the range of ordinary mol
lar interactions between neighboring lamellar sheets, the
sistence of theLa phase is usually explained by an effecti
steric repulsion between the sheets resulting from the c
straint of nonintersection. This constraint lowers the confi
ration entropy and therefore raises the free energy, leadin
an effective repulsive force between lamellar sheets
maintains the smectic order. Per unit area, the free en
change has the form@3#

DF/A}1/d2, ~1!

whered is the lamellar repeating distance. Consequently,d
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PRE 611063-651X/2000/61~4!/4148~8!/$15.00
le
le,
-
as
d
s
-

n
e

-
n

r-
g
el-

-
u-
r-

n-
-
to
at
gy

is large, the repulsive force is weak and thermal fluctuatio
in the oil-water interface may become significant enough
disrupt the smectic order. For amphiphilic membran
which are characterized by low interfacial tension and
small bending constant, thermal fluctuations are even m
important and can give rise to many topological defects
the lamellar structure, such as intermembrane passage
has further been shown theoretically that these passage
duce entropic attractive interactions that compete with
Helfrich steric repulsion, thus promoting the collapse of t
regular lamellar structure when fluctuations are stro
enough@4#.

When the formation of passages between membranes
come common, a disordered lamellar phase characterize
short range positional order may result@5#. To investigate
this possibility, we conducted neutron scattering experime
on a series of C10E4-D2O-octane lamellar microemulsion
where the surfactant volume ratios were fairly low so thad
would be on the order of 102 Å if a stacked structure were
formed. The clipped random wave model was then used
analyze the scattering data in order to generate a real-s
picture of the microemulsion as well as derive the probabi
distributions of the Gaussian and mean curvatures on
oil-water interface. From our results, it was clear that at h
dilutions the regular lamellar structure broke down due to
proliferation of topological defects induced by thermal flu
tuations.

II. CLIPPED RANDOM WAVE MODEL

Small angle neutron scattering has traditionally been u
as a noninvasive technique for probing the length scales
the specific interfacial area of disordered bicontinuous
croemulsions on a scale of several hundred angstroms@6#. In
recent years, through the use of the clipped random w
model ~CRW! @7#, it has become possible to analyze t
scattering intensity distribution of these microemulsions
obtain, in addition, various average interfacial curvatures
4148 © 2000 The American Physical Society
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PRE 61 4149CLIPPED RANDOM WAVE ANALYSIS OF ISOMETRIC . . .
their interfacial morphologies@8#. In this paper, we shall us
the CRW model with a spectral density function~SDF! cho-
sen according to the principle of maximum entropy to a
lyze the scattering profiles of the dilute lamellar microem
sions.

In the CRW model@7#, the order parameter field of
microemulsion system is first expanded in a series of sph
cally symmetric cosine waves with the magnitude of wa
vectorskn ~isotropically distributed! chosen from a distribu-
tion function f (k), and with random phasesfn uniformly
distributed within the interval@0,2p)

c~r !5A2

N(
1

N

cos~kn•r1fn!. ~2!

The order parameter field is normalized in such a way t
^ucu2&51. The oil-water interface is then generated by cl
ping the order parameter at a levela determined by the
relative volume fractions of each component, resulting in
oil-water interface that is mathematically defined as

c~r !5a. ~3!

For the purpose of calculating the Debye correlation fu
tion @9# in a bulk contrast experiment, the clipping operati
generates a two-level fieldz(r ) from the original, continuous
field c(r ) by assigningz(r )51 ~oil region! whenc(r )>a,
andz(r )50 ~water region! whenc(r ),a. Then the Debye
correlation function is the normalized form of the two-poi
correlation function^z(0)z(r )&. For an isometric micro-
emulsion, where the volume fractions of the oil and wa
regions are equal,a50. In order to treat the three
component microemulsion as an effective two-compon
system, we partition half~tail! of the surfactant into the oi
region and the other half~head! into the water region. The
scattering intensity and various geometrical quantities a
ciated with the surface defined by Eq.~3! can then be calcu
lated using the spectral functionf (k). First, by taking its
Fourier transform, the two-point correlation functiong(ur1
2r2u)5^c(r1)c(r2)& is obtained,

g~r !5E
0

`sin~kr !

kr
4pk2f ~k!dk. ~4!

The Debye correlation function for isometric microemu
sions can then be calculated fromg(r ),

G~r !5
2

p
sin21@g~r !#, ~5!

from which the theoretical scattering intensity is derived
@9#

I ~Q!5^h2&E sin~Qr !

Qr
4pr 2G~r ! dr, ~6!

where^h2&5(Dr)2w1w2 , Dr being the difference betwee
the scattering length densities of component 1 and 2~con-
trast!, andw1 , w2 being their respective volume fractions.

The CRW model also allows us to calculate the aver
Gaussian and mean square curvatures of the oil-water in
face from the moments of the spectral functionf (k) and the
-
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clipping level@10#. In particular, the total interfacial area pe
unit volume is proportional to the square root of the seco
moment^k2&. For an isometric microemulsion wherea50,
the average mean curvature is always^H&50 and

^K&52
1

6
^k2&, ~7a!

^H2&5
1

6
^k2&S 6

5

^k4&

^k2&2
21D . ~7b!

III. THEORY FOR SDF

Previous studies of bicontinuous microemulsions ha
used inverse polynomial forms off (k) @8# consistent with
the Gaussian approximation within the Landau-Ginzbu
framework. Although these spectral functions have produ
good fits to experimental data, there has not been suffic
theoretical justification for their functional forms. In this pa
per, we shall use entropy considerations to derive a fu
tional form of f (k).

We begin by considering the expression for generaliz
entropy associated with the probability distribution functi
f (k) @11#,

Sq

kB
5

12E f q~k!d3k

q21
~8!

which, in the limit of q→1, reduces to the familiar Boltz
mann expression

S52kBE f ~k!ln f ~k!d3k. ~9!

We require thatf (k) be normalizable and that its gene
alized second and fourth moments exist, so as to preserv
Legendre-transformation structure of thermodynamics@11#
and also produce a nonzero peak in the SDF. Following
method of Tsallis@12#, these constraints can be expressed

15E f ~k!d3k,

^k2&q5E k2f q~k!d3k, ~10!

^k4&q5E k4f q~k!d3k.

Maximizing the entropy subject to these constraints, we
tain an expression for the functional form off (k),

f ~k!5F 2S l1
1

q21D
2q

q21
1mqk21nqk4

G 1/(q21)

, ~11!

wherel, m, andn are the Lagrange multipliers for each o
the constraints.
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1/(q21) is restricted to positive integer values, sin
negative indices would produce an unnormalizable spec
function, and noninteger indices would result in fraction
powers ofk, which is inconsistent with a Landau-Ginzbu
description of the system. Also, for the ordinary second a
fourth moments to exist, the spectral function must be o
least inverse eighth order, hence 1/(q21) has to be greate
than 1.

The values ofq are thus restricted to 1,3/2,4/3, and so o
For this study, we ignored the higher order functional for
and choseq51 andq53/2, thereby generating an expone
tial form and an inverse eighth order polynomial form

f 1~k!5exp~l1mk21nk4!,

f 3/2~k!5
4~l12!2

9~nk41mk222!2
. ~12!

For mathematical simplicity, we dropped thek4 term in
the exponential to reducef 1(k) to Gaussian form. This is
equivalent to dropping the constraint of the fourth momen
Eq. ~10!, which is unnecessary since the Gaussian expon
tial possesses all even-order moments anyway. Furtherm
it can be observed thatf 3/2(k) is the square of an invers
fourth order polynomial. For microemulsions, the norm
ized Teubner-Strey spectral function

f TS~k!5
b/p2

k422~a22b2!k21~a21b2!2
~13!

is a useful functional form that relates the domain sized
52p/a and the correlation lengthj51/b to the two param-
etersa andb in the spectral function. Since the two Lagran
multipliers m andn can be recast into the two parametersa
and b without loss of generality, we therefore choosef 3/2
;( f TS)

2, resulting in the normalized spectral functions

f 1~k!5
1

~2psk
2!3/2

expS 2
k2

2sk
2D ,

f 3/2~k!5
8

p2

b3~a21b2!

@k422~a22b2!k21~a21b2!2#2
. ~14!

The final spectral function is then taken to be a linear sup
position of the two forms

f ~k!5b f 1~k!1~12b! f 3/2~k!. ~15!

With this form of the spectral function, the two-point co
relation functions can be expressed as

g1~r !5expS 2
sk

2r 2

2 D ,

g3/2~r !5
exp~2br !

a3r
@~a21b21a2br !sin~ar !

2ab2r cos~ar !#, ~16!
al
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while the ordinary second and fourth moments are calcula
to be

^k2&53bsk
21~12b!~a21b2!,

~17!

^k4&515bsk
41~12b!~a21b2!~a215b2!.

IV. EXPERIMENTS

The validity of our proposed spectral function was th
tested by using it to analyze the scattering patterns
C10E4-octane-D2O microemulsions in the lamellar phas
The scattering experiments were conducted using time
flight spectroscopy on the SAND instrument at the Inten
Pulsed Neutron Source, Argonne National Laboratories.
surfactant volume fraction of the samples was varied fr
17.3 to 21.9 % and they were all maintained at a tempera
of 22.5 °C, as shown in the phase diagram above.

Proper analysis of the sharp scattering peak of lame
systems requiredQ-resolution correction, and this was a
complished by convolving the theoretical scattering intens
with a Gaussian resolution function. Values for theQ width
of the resolution function were supplied by Thiyagaraj
@13#. After subtracting the background due to incohere
scattering, relatively good fits were obtained by analyz
the data with the spectral function in Eqs.~14! and ~15!, as
shown in Figs. 1 and 2. From the inset, which compares
scattering intensities of bicontinuous~13.2%! and lamellar
~21.9%! microemulsions, it is also clear that lamellar sy
tems have a much sharper scattering peak.

Looking carefully at the scattering pattern, however, th
were already clues that our highly dilute lamellar microem
sions did not possess the usual stacked structure ofLa mi-
croemulsions. The 2D scattering pattern was isotropic, wh
is not expected for theLa phase, and the radially average
1D scattering peak was rather broad, even after correcting
resolution~see Fig. 3!. This meant that our samples did n
possess a regular layered structure, otherwise a Bragg
would have been observed.

FIG. 1. Phase diagram of the C10E4-octane-D2O system.
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V. RESULTS AND DISCUSSION

Figure 4 summarizes the variation of the fitted parame
as a function of surfactant volume fraction, and clear tre
can be observed from the plots. The degree of local order
be expressed as the ratio of the correlation length to
domain size,j/d, which is equivalent toa/2pb. The first
graph in Fig. 4 thus shows that local order increases as
surfactant volume fractionws is raised, which is consisten
with the fact that the steric interaction between neighbor
surfaces increases as the domain size decreases.

The increasing order of the microemulsion system a
function of ws is also reflected in the increase insk and the
decrease inb. A spectral function centered aroundk50 is
characteristic of disordered scattering due to the domin
contribution from long wavelength fluctuations. The fallin
values ofb, which describes the relative contribution of th
zero-mean Gaussianf 1(k) to the overall spectral function in

FIG. 2. Scattering intensities of lamellar samples and their
~solid lines!. In the inset, we compare the scattering intensities
bicontinuous~13.2%! and lamellar~21.9%! samples.

FIG. 3. Theoretical scattering intensity of a lamellar microem
sion (w521.9%) before resolution correction~solid line! and after
correction~dashed line!.
rs
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Eq. ~15!, is thus expected as the system gains local order
the same time, the increasing values ofsk reflects the de-
creasing importance of long wavelength contributions to
overall scattering intensity.

Figure 4 also shows that the mean Gaussian curvature^K&
becomes more negative withws , while the mean square cur
vature^H2& increases. The declining value of^K& is likely
due to the increasing number of topological defects in
lamellar surfaces as more and more surfactant molecules
packed into the surfaces. The tighter packing also results
slight increase in surface fluctuations, which accounts for
rising values of^H2&. However, compared to previousl
measured values of̂H2& for bicontinuous microemulsions
@8#, these values are smaller by almost a factor of 5, indic
ing the relative smoothness of the interface.

We also found an empirical linear relationship betwe
the domain size 2p/a and the inverse of the surface-volum
ratio, as shown in Fig. 4. This relationship can be used
gether with the equation

S

V
5

2

p
A^k2&

3
, ~18!

to eliminate one of the four fitting parameters, effective
reducing the number of independent parameters to three
lamellar microemulsions.

VI. MORPHOLOGY VISUALIZATION

The clipped random wave model also lends itself easily
computer rendering, allowing us to visualize the morpholo
of an oil-water interface defined byc(r )5a. For ease of
calculation, we first re-express Eq.~2! as a sum over
wavevectors instead of individual cosine waves, resulting

c~r !5Re(
k

S 2p

L D 3/2

A6 f ~k!A~k!eik•r1 if(k), ~19!

where L is the length of the real-space lattice we want
generate andA(k) is a random number uniformly distribute
within the interval @0,1#. Here we have used the comple
exponential representation of the cosine function, and e
term is weighted by the aggregate wave vector distribut
function A6 f (k). The additional factorA(k) takes into ac-
count the possibility of destructive interference in Eq.~2!
between cosine waves with the same wave vector but dif
ent phases.

c(r ) is thus readily calculated by performing an inver
discrete Fourier transform over a sufficiently large 3D latt
of k values, with each wavevector assigned a randomly g
eratedf(k) and A(k). The resulting order parameter fiel
can then be clipped at the appropriate levela to generate
distinct oil-water domains.

The result of one such computation is shown on the n
page, using the SDF from Eqs.~14! and~15!. At first glance,
the structure shown above is surprising because it does
resemble the conventional picture of extended lame
planes. However, upon closer inspection, small domains
be seen where the internal structure is locally lamellar~white

s
f

-
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FIG. 4. Variation of parameters for lamellar samples.
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lines!, but the orientations of the lamellar sheets differ acr
domains. Also, there seems to be many ‘‘holes’’ in t
lamellar planes.

This structure is actually consistent with the results fro
Figs. 4 and 5 which show thatj/d'2, thus the local order
should only persist for about 2 or 3 domain lengths bef
decaying away. Furthermore, the highly negative me
Gaussian curvature indicates the proliferation of passages
tween lamellar sheets, which is readily observed in Fig.

In addition to elucidating the real space structure of
microemulsion, this method also allows us to derive
probability distributions of the Gaussian and mean squ
curvatures, rather than merely knowing their average va
from Fig. 4. Using Eq.~19!, the spatial derivatives ofc(r )
can be easily calculated. Since the microemulsion interfac
represented byc(r )50, we can make use of well-know
equations in differential geometry to calculate the Gauss
and mean curvatures at each surface point@14#

K5
1

M4
@cxxcyycz

22cxy
2 cz

212cxzcx~cycyz2czcyy!

1~permutations!# ~20!
s

e
n
e-

e
e
re
es

is

n

FIG. 5. 2D slice~size 204832048 Å! of a lamellar microemul-
sion in real space (ws521.9%). Small domains with a lamellarlik
internal structure can be observed, some of which are marked
white lines.
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H5
1

2M3
@cxx~cy

21cz
2!22cxcycxy1permutations#,

where ‘‘permutations’’ indicates additional terms obtain
by cyclic permutation, and where

M5Acx
21cy

21cz
2. ~21!

Using this procedure, the probability distributions ofK
andH can thus be determined. As we can see from the re
of one such calculation in Fig. 7, the distribution functio
P(H) is symmetrically distributed aroundH50, which is
expected for an isometric microemulsion. On the other ha
the distribution functionP(K) is peaked and skewed toward
the negative values, which is natural for an interface wit
negative average Gaussian curvature. However, there

FIG. 6. Section of a lamellar microemulsion in real space (ws

521.9%). A passage defect~marked by arrows! can be clearly
observed. The disordered nematic structure is the result of a pr
eration of such defects. Length scales are marked in angstrom

FIG. 7. Distribution of the mean curvatureP(H) ~left! and
Gaussian curvatureP(K) ~right! for a ws521.9% sample. The val
ues of^K& and^H2& calculated from these distributions agree w
the results given in Fig.~4! which were obtained from Eq.~7!.
lt

d,

a
a

small but significant probability that positive values
Gaussian curvature can be found at some points on the in
face. This means that an arbitrary point of the interface m
not always have a saddle-point configuration, but may
stead have locally spherical curvatures.

VII. CONCLUSION

We have made measurements of the scattering intensi
highly dilute lamellar microemulsions and analyzed the
sults using a spectral density function derived by maximi
tion of generalized entropy. Indeed, the morphology of
lamellar structure we observe in Figs. 5 and 6 is surprising
first sight. However, the fact that this morphology is com
pletely consistent with the scattering pattern observed le
us to conclude that in this type of dilute lamellar microem
sion the structure may in fact contain a large number
defects. These defects are due to the small bending con
of the surfactant film and vanishing interfacial tension of t
oil-water interface which result in large thermal fluctuation
Since the intermembrane distance is too great, these fluc
tions are not compensated by the usual Helfrich steric re
sion. Furthermore, our findings are in agreement with stud
of lamellar systems near a sponge-lamellar transition us
freeze-fracture electron microscopy@15#, which show clearly
the existence of membranes perforated by a large numbe
passage defects. It is thus reasonable to conclude tha
tended lamellar planes are actually not stable in this reg
of the phase diagram close to the boundary between
lamellar and disordered bicontinuous phases.

ACKNOWLEDGMENTS

We would like to thank the instrument scientists at SAN
~IPNS!, Dr. P. Thiyagarajan, Dr. D.G. Wozniak, and D
K.C. Littrell, for their help with the experiments. We woul
also like to thank Dr. S.M. Choi for invaluable discussio
regarding the fitting of the clipped random wave model
the experimental data. This work was supported by a gr
from the U.S. Department of Energy.

APPENDIX: DERIVATION OF ORDER PARAMETER
EQUATION FOR MORPHOLOGY VISUALIZATION

To apply Fourier techniques when using the compute
generate the order parameter field, we first need to re-exp
Eq. ~2! as a sum over the wave vectorsk rather than as a sum
over individual cosine waves. This is accomplished by p
forming the sum over cosine waves with the samek but
different fn .

Using the complex exponential representation of the
sine, we can rewrite the order parameter equation as

c~r !5A 1

2N(
1

N

eikn•r1 ifn1e2 ikn•r2 ifn

5A 1

2N(
k

(
kn5k

eikn•r1 ifn1e2 ikn•r2 ifn. ~A1!

For the inner sum, the common factor exp(ikn•r ) can be
factored out, leaving a sum of unit vectors on the comp
plane

if-
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(
kn5k

eikn•r1 ifn5eik•r~eif11eif21eif31••• !. ~A2!

Since the phasesfn are completely random, the superpo
tion of these unit vectors results in a vector also with rand
magnitude and phase. The magnitude of this net vector, h
ever, has a maximum valuep(k), given by the number of
cosine waves with the same wave vector~in the case where
all the phasesfn are exactly equal!. The sum can therefore
be succinctly represented as

(
kn5k

eikn•r1 ifn5p~k!A~k!eik•r1 if(k), ~A3!

whereA(k) is a random number uniformly distributed in th
interval @0,1# and f(k) also a random number in the rang
@0,2p).

Substituting these results into Eq.~A1!, we arrive at the
equation

c~r !5(
k

p~k!A~k!~eik•r1 if(k)1e2 ik•r2 if(k)!, ~A4!

where we have absorbed other normalization factors
p(k). We then normalize Eq.~A4! by calculating

^ucu2&5(
k,k8

p~k!p~k8!^A~k!A~k8!&

3@ei (k1k8)•r^eif(k)eif(k8)&

12ei (k2k8)•r^eif(k)e2 if(k8)&

1e2 i (k1k8)•r^e2 if(k)e2 if(k8)&#. ~A5!

Since^eif(k)& 5 0, therefore

^eif(k)eif(k8)&50,

^eif(k)e2 if(k8)&5dk,k8 , ~A6!

^e2 if(k)e2 if(k8)&50,

which reduces Eq.~A5! to

^ucu2&5(
k

2p2~k!^A2~k!&. ~A7!

Also, ^A2(k)&51/3 sinceA(k) is uniformly distributed be-
tween 0 and 1. Imposing the normalization constraint
^ucu2&51, we now obtain
n

w-

to

f

(
k

2

3
p2~k!51. ~A8!

If this equation is compared to the normalization conditi
on f (k) in Eq. ~10!, we can immediately see that

(
k

2

3
p2~k!5E f ~k!d3k, ~A9!

which results in the identity

p~k!5S 2p

L D 3/2A3 f ~k!

2
. ~A10!

Substitution of Eq.~A10! into Eq. ~A4! yields

c~r !5(
k

S 2p

L D 3/2A3 f ~k!

2
A~k!~eik•r1 if(k)1e2 ik•r2 if(k)!

5Re(
k

S 2p

L D 3/2

A6 f ~k!A~k!eik•r1 if(k), ~A11!

which was the equation used in the paper, Eq.~19!.
The correctness of this expression can then be checke

calculating the two point correlation functiong(r )
5^c(r )c(0)&,

g~r !5(
k,k8

S 2p

L D 3 3

2
Af ~k! f ~k8!^A~k!A~k8!&

3@eik•r^eif(k)eif(k8)&12eik•r^eif(k)e2 if(k8)&

1e2 ik•r^e2 if(k)e2 if(k8)&#, ~A12!

which, using the relations given in Eq.~A6!, reduces to

g~r !5(
k

S 2p

L D 3

3 f ~k!^A2~k!&eik•r. ~A13!

Since^A2(k)& 5 1/3, therefore we can see thatg(r ) is just
the Fourier transform of the spectral functionf (k),

g~r !5(
k

S 2p

L D 3

f ~k!eik•r, ~A14!

which is equivalent to Eq.~4! for a continuous isotropic dis
tribution of wave vectors.
.
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